Effect of a thermally stratified layer in the outer core of Mercury on its internally generated magnetic field

ROYAL OBSERVATORY OF BELGIUM

A. Rivoldini¹, M.-H. Deprost^{1,2}, Y. Zhao¹, J. Knibbe¹, and T. Van Hoolst^{1,2} KU LEUVEN 1: Royal Observatory of Belgium, 2:Institute of Astronomy, KU Leuven

Scope

- dynamo models require a stratified layer to explain the observed magnetic field (e.g. Christensen 2006, Takahashi 2019)
- core-mantle boundary heat flow sub-adiabatic during thermal evolution (e.g Hauck 2006, Knibbe 2018 and 2021)
- reducing formation conditions imply that Si is the main light element in the core together with a smaller fraction of S or C (e.g. Namur 2016, Steenstra 2020)
 - unlike S, Si and C partition into the solid inner core
 - \Rightarrow power available to drive the dynamo decreases with increasing Si and C

- The likely long-lived dynamo and the presence of a stable layer place important constraints on the interior structure and evolution of the core and planet
- and in particular on the inner core radius and core composition

MESSENGER

nT -500 -1000 500 1000

Dynamo simulation

Takahashi 2019

This study

- Investigate the necessary conditions for a long-lived and present-day dynamo
- (Greenwood 2021) that takes into account the formation of a stably stratified layer in the core and evolving core material properties
 - mantle temperature profile, cessation of convection)
- core material properties

1-D mantle model (Thiriet 2019) coupled to core thermal evolution model

 scaling law parameters in mantle model are calibrated to agree with 2-D dynamic evolution models (core-mantle boundary and surface heat flow,

interior structure models agree with geodesy data and use the most recent

Core thermodynamic and transport properties of Fe-S-Si alloy

- Terasaki et al. 2019 and Edmund et al. 2022
- Assume equipartition of Si between liquid and solid Fe and no partitioning of S in solid Fe
- relation with Sommerfeld value for the Lorenz number

Thermodynamic propertied of liquid Fe-S-Si and solid fcc or bcc Fe-Si based on experimental results of

New core liquidus parameterisation based on existing Fe-S and new Fe-Si melting data (Edmund et al. 2022)

Thermal conductivity calculated from electrical conductivity (Wagle et al 2019) using Wiedemann-Franz

Prior constraints on the core

- •core radius: 2000±50km (moment of inertia, libration amplitude, k₂) (e.g. Rivoldini 2019, Knibbe 2020, Steinbrügge 2020)
- •inner core radius: Fe-S: 0-1500km and Fe-Si: 1300-2010km

Models without an inner core agree with geodesy data but are difficult to reconcile with the past and present core generated magnetic field

 \Rightarrow require bottom up inner core formation

Light element fraction after formation

Thermal evolution of the core alone $r_{cmb} = 2000 \text{ km}$, exponentially decreasing CMB heat flow to 10 mW/m^2

- Present day dynamo unlikely for models without S in the core

Comparable boundary layer thickness because of comparable convective power

Thermal evolution of Mercury

 $r_{cmb} = 2000 \text{ km}$ with Fe-2.5wt%S-4wt%Si

- Cessation of mantle convection increases CMB heat flow and promotes dynamo generation
- in the mantle

Ignoring the occurrence of stratification in the core leads to early cessation of convection

Summary

- for a past and present-day dynamo
- present day dynamo highly unlikely for Fe-Si models
- to drive a past and present-day dynamo
- our results show that the cessation of mantle convection decreases the

a stable layer in the core delays cessation of mantle convection and allows

 models with a small fraction of S have a present-day inner core of ~1000km, a ~600km thermal boundary layer, and generate sufficient ohmic dissipation

thickness of the thermally stratified layer and increases ohmic dissipation